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Background: Due to the high morbidity and mortality of primary intracerebral hemorrhage (ICH), several 
non-contrast computed tomography (NCCT) imaging markers were proposed to determine the prognosis 
of affected patients. We prospectively evaluated the predictive accuracy of certain imaging features and 
established a predictive model composed of highly relevant imaging and clinical features to identify the 
3-month functional outcome in primary ICH patients 
Methods: Patients admitted for primary ICH to a tertiary care center (Al-Zahra Hospital, Isfahan, Iran) 
were prospectively included from September 2021 to October 2023. Inclusion criteria were defined as: 
Patients aged ≥18 years with primary or spontaneous ICH confirmed on NCCT at the time of admission. 
The baseline NCCT was conducted in the early stage of ICH (within 6 hours from symptom onset). The 
initial NCCT images were obtained within 6 hours from symptom onset. After 3 months, functional 
outcome of patients was assessed using the modified Rankin Scale (mRS); with mRS ≥3 as poor prognosis and 
mRS ≤2 as favorable prognosis. The Chi-squared and Logistic regression tests were used for determining 
the association between clinical and imaging features in differentiating patients’ prognosis. Machine learning 
algorithm [support vector machine (SVM)] was also used to determine the importance rate of each relevant 
imaging sign in predicting prognosis.
Results: A total of 203 primary ICH patients were included, among which 119 patients (58.6%) had unfavorable 
prognosis at 3 months. Age, diastolic blood pressure, and Glasgow Coma Scale (GCS) score at admission were 
significantly associated with prognosis. Among imaging features, hemorrhage volume [95% confidence interval 
(CI): 0.972–0.991, P<0.001], the presence of midline shift (95% CI: 2.038–7.911, P<0.001), blend sign (95% CI: 
1.081–3.760, P=0.026), satellite sign (95% CI: 1.451–4.764, P=0.001), and black hole sign (95% CI: 2.262–12.714, 
P<0.001) were significantly different among 2 groups. SVM algorithm showed hemorrhage volume the most 
important prognostic imaging feature (importance rate: 100%), along with black hole (63.1%), midline shift (54%), 
satellite (20.4%), and blend sign (15.6%); with decreasing order of importance.
Conclusions: Using certain radiological and clinical features, we established a model with considerable 
prognostication in management of patients with primary ICH in emergency departments. 
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Introduction

Spontaneous or primary intracerebral hemorrhage (ICH), 
accounting for 85% of all cases of hemorrhagic strokes, 
is characterized by non-traumatic bleeding within the 
brain parenchyma, typically caused by small-vessel disease 
due to amyloid angiopathy or chronic, uncontrolled  
hypertension (1,2).

Although ICH accounts for approximately 10–20% of 
all stroke cases worldwide, it remains the most lethal stroke 
type, with a 30-day mortality rate of up to 40% and 1-year 
mortality rate of up to 50%. Despite recent advances in the 
interventional management of ischemic stroke patients, the 
beneficial effects of medical and interventional treatment on 
the survival and long-term prognosis of patients with ICH 
have lagged in recent clinical trials (3,4). Consequently, early 
accurate stratification of ICH outcomes in the emergency 
department is strongly desired and would facilitate the 
implementation of appropriate therapeutic options for 
affected patients (5). As a result, several prognostic tools 
encompassing different combinations of imaging markers 
were introduced to manage patients with primary ICH. 
Most notably, imaging markers of hemorrhage expansion 
held great promise in predicting prognosis in patients 
with ICH. These imaging signs include the spot sign, the 
spot-tail sign in computed tomography (CT) angiography, 
along with the island sign, blend sign, satellite sign (SS), 
black hole sign, and swirl sign in non-contrast computed 
tomography (NCCT). These imaging features are clinically 
important, as their presence elaborates the need for the 
initiation of anti-hematoma expansion treatments in the 
acute phase of ICH (6). The volume of the hemorrhage is 
another important prognostic indicator for 30-day mortality 
in primary ICH (7).

NCCT of the brain remains the imaging modality of 
choice in the acute setting (8). In addition to differentiating 
ICH from Ischemic stroke, NCCT provides detailed 
information about probable hemorrhage etiology and 
quantitative imaging features such as hemorrhage 
location and volume, midline structure shift, presence 
of intraventricular hemorrhage (IVH), and markers 
for early hematoma expansion including the black hole 
sign (BHS), the SS, and the blend sign (9,10). Baseline 
hematoma volume was found to be a well-known predictor 
of hematoma expansion and poor functional outcome in 
ICH (7,11,12). In addition, markers for early hematoma 
expansion were related to unfavorable clinical outcomes 
within 90 days in patients with ICH (13). Early, accurate 

identification of NCCT markers suggestive of hematoma 
expansion is crucial, as the implementation of anti-
hematoma expansion therapies will be translated into more 
favorable clinical outcomes in ICH patients (14). In addition 
to radiological parameters, several clinical indicators were 
shown to be predictive of poor outcome in ICH, including 
advanced age, increased systolic blood pressure, and lower 
Glasgow Coma Scale (GCS) score at presentation (7,15,16). 
For instance, lower GCS at presentation, previous ischemic 
stroke, and history of smoking were correlated with ICH 
expansion and indicated poor prognosis (16). Therefore, it 
is imperative to note certain clinical and laboratory markers 
in the initial encounter of primary ICH patients to improve 
prognostication and medical decision-making in affected 
patients.

Consequently,  considering the high morbidity 
and mortality of primary ICH and the importance of 
determining early prognosis using predictive models and 
the lack of similar studies in our country, this study aimed 
to establish a predictive model using relevant neuroimaging 
features and clinical parameters in determining the 90-day 
functional outcome in patients with primary ICH. This 
study provides an easy-to-employ prognostication model for 
clinicians in the emergency department and would improve 
medical decision-making in the management of patients 
with primary ICH. In our current study, we also employed 
a machine learning algorithm [support vector machine 
(SVM)] to evaluate the predictive role of certain imaging 
features for differentiating ICH patients with poor and 
good prognosis. We present this article in accordance with 
the TRIPOD+AI reporting checklist (available at https://
qims.amegroups.com/article/view/10.21037/qims-24-1299/
rc).

Methods

The study was conducted in accordance with the Declaration 
of Helsinki and its subsequent amendments. The study was 
approved by the Institutional Ethics Committee of Isfahan 
University of Medical Sciences (approval date: 8/1/2021, 
protocol code IR.MUI.MED.REC.1400.446) and the 
National Research Ethics Board (approval number IR.MUI.
MED.REC.1400.446). Written and verbal informed consent 
were obtained from participants after a complete explanation 
of the study. For patients with impaired consciousness, we 
obtained informed consent from their families. For such 
patients, according to our national medical ethical committee 
guidelines, we initially approached their first-degree male 

https://qims.amegroups.com/article/view/10.21037/qims-24-1299/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-1299/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-1299/rc
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relative (if applicable) and patients’ spouses were approached 
for obtaining informed consent in other cases. For rare 
instances when neither a male relative nor a spouse were 
available, we obtained informed consent from the patients’ 
older children. 

Patient selection and study design

In this prospective study, we recruited and analyzed 
imaging and clinical markers of 203 patients with primary 
ICH between September 2021 and October 2023 who 
were referred to and hospitalized at our university 
hospital (Al-Zahra General Hospital, Isfahan University 
of Medical Sciences, Iran), which is a large tertiary stroke 
center. Inclusion criteria were defined as: Patients aged  
≥18 years with primary or spontaneous ICH confirmed 
on NCCT at the time of admission. The baseline NCCT 
was conducted in the early stage of ICH (within 6 hours 
from symptom onset). Patients were excluded from 
our study if they had any of the following: (I) traumatic 
brain injury, (II) secondary ICH due to hemorrhagic 
transformation following ischemic infarction, hemorrhage 
associated with brain tumor, arteriovenous malformation, 
cerebral cavernous malformation, dural arteriovenous 
fistula, intracranial venous thrombosis, or rupture of 
intracranial aneurysms, (III) presence of primary IVH, (IV) 
neurosurgical hematoma evacuation or external ventricular 
drainage prior to obtaining brain imaging, (V) CT images 
with severe artifact, and (VI) previous or current history 
of consumption of anticoagulant medications. Patients’ 
baseline demographic characteristics (age, gender), 
underlying comorbidities (history of hypertension, diabetes 
mellitus, central nervous system diseases such as ischemic 
stroke, cardiovascular diseases, and renal diseases), baseline 
GCS score, and smoking history were also collected using 
a defined paper research template at admission. Data 
regarding imaging features were also collected in our 
devised paper research templates and were transferred onto 
Excel sheets for analytical purposes.

Image data and evaluation

All images were acquired using the same scanning protocol 
in the 64-slice spiral CT scanner (Siemens). The protocol 
consisted of 120 KV, 280 mA, axial layer thickness  
5 mm, and CTDIvol >40 mGy. For more consensus, all 
baseline NCCT images were simultaneously examined 
by an experienced radiologist (S.H.), who had 10 years 

of experience in neuroradiology and a radiology resident 
(T.J.) with 1 year of neuroimaging diagnosis experience 
and the following imaging features were evaluated using 
standardized definitions (17): 

(I)	 Hemorrhage location: deep (basal ganglia, 
thalamus, internal capsule, corona radiata, or 
corpus callosum), brain hemisphere, cerebellum, 
brainstem, and others. 

(II)	 Hemorrhage volume quantification: using the 
ABC/2 method (also known as Tada formula) for 
parenchymal ICH without IVH. In this method, 
A corresponds to the largest hematoma diameter 
on axial image, B corresponds to the largest 
perpendicular diameter to A on the same image 
slice, and C corresponds to the number of slices in 
which the hematoma was observed multiplied by 
the slice thickness (Figure 1) (18). For ICH with an 
intraventricular component, only the parenchymal 
component was assessed using this formula. All the 
lengths were measured in cm and volumes in mL. 

(III)	 Presence of midline shift: The midline of the brain 
was determined by drawing a line connecting the 
anterior and posterior borders of the falx cerebri. 
The maximum vertical distances from the center of 
the midbrain, septum pellucida, pineal calcification, 
and the falx cerebri to the brain midline were 
measured and recorded as the midline shifts in mm. 
If different midline shift values were present in 
multiple slices, we chose the maximum value from 
all recorded midline shift values. As previous studies 
have reported different thresholds for midline 
shift (13,16,19), in this study we have also selected 
3 mm as the cutoff value for further analyzing its 
association with the prognosis of primary ICH, 
where (yes/no; yes defined as a midline shift greater 
than 3 mm). We also evaluated whether different 
midline sift values were correlated with prognosis. 

(IV)	 The presence or absence of markers of hematoma 
expansion; including the blend sign, the SS, and the 
BHS. The criteria for each of the relevant imaging 
signs were as follows (20):
	 Blend sign: uneven densities with an attenuation 

difference of at least 18 Hounsfield units (HU) 
between the areas with different densities (Figure 
2A).

	 SS: any small hematoma completely isolated 
from the main hematoma observed at least in 
one image slice. The shortest distance between 
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this small hematoma and the main hematoma 
was 1–10 mm (Figure 2B).

	 BHS: hypodense area that is encapsulated 
within a hyperattenuating hematoma, with a 

density difference of at least 28 HU between 2 
areas of different densities (Figure 2B).

Images with poor quality or artifacts were excluded from 
our study.

A B

Figure 1 A 78-year-old male with primary ICH in the right temporal lobe. NCCT axial (A) and coronal images (B) show how to calculate 
ICH with ABC/2 formula. In this patient, it is approximately 6.7 cc. ABC/2, ellipsoid volume equation in which A represents the maximum 
length in cm, B represents width perpendicular to A on the same slice, and C represents the number of slices multiplied by the slice 
thickness. ICH, intracerebral hemorrhage; NCCT, non-contrast computed tomography. 

A B

Figure 2 NCCT axial images. (A) Right occipital ICH with two different densities (blend sign, red arrows). (B) Left parietal ICH. The 
hypodense area within the hematoma (black hole sign, yellow arrow) and two small hematomas seen separately in the posterior aspect of the 
largest one (satellite sign, green arrow). ICH, intracerebral hemorrhage; NCCT, non-contrast computed tomography.
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Outcomes

After the initial NCCT of the brain was obtained and stored 
in the picture archiving and communication system (PACS) 
for future comparison, patients were followed at 90 days and 
their functional neurological outcome was evaluated using 
the modified Rankin Scale (mRS) (21,22) at 90 days post-
discharge via telephone interview conducted by a trained 
medical staff (23). Our trained medical staff was blind to 
the patients’ clinical and imaging data and performed the 
interview using a structured, Persian-translated version 
of mRS. This approach was employed to ensure adequate 
follow-up and reduce attrition. Based on mRS, a binary 
outcome was defined as a good prognosis (mRS ≤2) or a 
poor prognosis (mRS ≥3) (24). 

Statistical analysis

The sample size was calculated 203 using logistic regression 
model and considering type one error rate of 5% and 
statistical power of 80% previous similar studies (25). 
Continuous and categorical data are reported as mean 
± standard deviation (SD) for normally distributed data 
[median (range) for non-normally continuous variables] 
and frequency (percentages), respectively. The normality 
of continuous data was evaluated using the Kolmogorov-
Smirnov test and Q-Q plot. Non-normally positive skewed 
data were subjected to logarithmic transformation for 
normalization. Continuous normally and non-normally 
distributed data were compared between two groups using 
independent samples t-test and non-parametric Mann-
Whitney U test, respectively, while categorical variables by 
using the chi-squared test. 

In this study, we tested the predictive value of 
various imaging features and clinical and demographic 
characteristics using chi-squared test and logistic regression. 
Those predictors that were significantly associated with 
dependent variable in univariate analysis were entered 
into multivariable logistic regression. Results of logistic 
regression were reported as odds ratio (OR) and 95% 
confidence interval (CI) for OR. During logistic regression 
modeling, we adjusted the predictive role of imaging 
features for potential confounding variables, such as age 
and gender. We also used machine learning algorithm 
SVM to evaluate the predictive role of imaging features 
for determining patient prognosis. Features we used in 
SVM were those predictors which we identified them as 
significant predictors of poor prognosis in univariate and 

multivariable analyses. To ensure the generalizability and 
robustness of the models, the dataset is split into training 
and test sets, where the training set comprised 70% of 
samples is used to build the model, and remaining, i.e., 
30% was considered as the test set, which was used for 
evaluating its performance. Moreover, the hyperparameters 
of the algorithms are tuned using 5-fold cross-validation 
within the training set, wherein the data is divided into 
five subsets, and the model is trained five times, each time 
using four subsets for training and one subset for validation. 
After finding the best values for hyperparameters, we use 
several metrics, including area under the receiver operator 
characteristic curve (AUC), sensitivity, specificity, and 
accuracy to determine the best performing model. All 
conventional statistical analyses were performed using 
SPSS version 26 (IBM Corp., SPSS Statistics for Windows, 
Version 26.0., Armonk, NY, USA) and SVM was run 
by using R free statistical software version 4.4 (R Core  
Team, 2023). 

Results

Baseline characteristics

A total of 203 patients [female 78 (38.4%), male 125 
(61.6%)] with primary ICH were identified during our 
study period, among whom 119 patients (58.6%) developed 
unfavorable prognosis in terms of functional neurological 
outcomes based on mRS. There was no statistically 
significant association between sex, history of hypertension, 
diabetes mellitus, cardiovascular diseases, renal diseases, 
previous ischemic stroke, elevated systolic blood pressure, 
and smoking (P>0.05). However, for age, diastolic blood 
pressure, and GCS score at admission there were significant 
differences between the two groups (P<0.05); indicating 
that advanced age (mean 68±14.35), higher diastolic blood 
pressure (97.37±24.67), and lower GCS score (mean 
9.82±4.92) at admission were associated with poor prognosis 
in primary ICH patients. The demographic and clinical 
characteristics of patients are shown in Table 1.

NCCT imaging markers and prognosis

Among NCCT imaging features obtained at baseline, the 
location of hemorrhage was not associated with different 
prognosis among patients (all P>0.05). The volume 
of the hemorrhage was considerably associated with  
90-day prognosis (P=0.001), patients with larger hematoma 
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Table 1 Comparison of baseline clinical, demographic, and NCCT imaging features between primary ICH patients with favorable and poor 
prognosis

Characteristics Favorable prognosis (N=84) Poor prognosis (N=119) P value

Gender 0.122

Female 27 (32.1%) 51 (42.9%)

Male 57 (67.9%) 68 (57.1%)

Age (years), mean ± SD 60.89±14.56 68±14.35 0.001

SBP at admission (mmHg), mean ± SD 161.74±31.16 170.46±34.9 0. 064

DBP at admission (mmHg), mean ± SD 91.69±15.47 97.37±24.67 0.046

Baseline GCS score, mean ± SD 12.92±3.46 9.82±4.92 <0.001

Disease history

DM 0.983

Yes 26 (41.3%) 37 (58.7%)

No 58 (41.4%) 82 (58.6%)

HTN 0.654

Yes 59 (40.4%) 87 (59.6%)

No 25 (43.9%) 32 (56.1%)

CNS disease 0.531

Yes 20 (37.7%) 33 (62.3%)

No 64 (42.7%) 86 (57.3%)

Cardiovascular disease 0.576

Yes 19 (38%) 31 (62%)

No 65 (42.5%) 88 (57.5%)

Renal disease 0.326

Yes 1 (20%) 4 (80%)

No 83 (41.9%) 115 (58.1%)

Smoking 0.176

Yes 13 (54.2%) 11 (45.8%)

No 71 (39.7%) 108 (60.3%)

Hematoma volume (mL)

Mean ± SD 20.56±29.34 45.54±50.15 0.001

Median 9 30

ICH location

Brainstem 0.117

Yes 5 (25%) 15 (75%)

No 79 (43.2%) 104 (56.8%)

Table 1 (continued)
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Table 1 (continued)

Characteristics Favorable prognosis (N=84) Poor prognosis (N=119) P value

Cerebral hemispheres 0.760

Yes 30 (40%) 45 (60%)

No 54 (42.2%) 74 (57.8%)

Basal ganglia 0.065

Yes 30 (34.1%) 58 (65.9%)

No 54 (47%) 61 (53%)

Thalamus 0.342

Yes 19 (35.8%) 34 (64.2%)

No 65 (43.3%) 85 (56.7%)

Cerebellum 0.613

Yes 8 (36.4%) 14 (63.6%)

No 76 (42%) 105 (58%)

Midline shift >3 mm <0.001

Yes 14 (20.9%) 53 (79.1%)

No 70 (51.5%) 66 (48.5%)

Midline shift (mm) <0.001

Mean ± SD 1.07±2.55 4.4±5.62

Median [range] 0 [0, 11] 0 [0, 22]

CT imaging signs

Black hole sign <0.001

Yes 7 (15.2%) 39 (84.8%)

No 77 (49%) 80 (51%)

Satellite sign 0.001

Yes 24 (28.2%) 61 (71.8%)

No 60 (50.8%) 58 (49.2%)

Blend sign 0.026

Yes 20 (30.3%) 46 (69.7%)

No 64 (46.7%) 73 (53.3%)

Independent t-test, ANOVA test, and Chi-squared test were used for statistical analysis. ANOVA, analysis of variance; CNS, central 
nervous system; CT, computed tomography; DBP, diastolic blood pressure; DM, diabetes mellitus; GCS, Glasgow Coma Scale; HTN, 
hypertension; ICH, intracerebral hemorrhage; NCCT, non-contrast computed tomography; SBP, systolic blood pressure; SD, standard 
deviation.

volume at baseline (median 30 mL, 45.54±50.15 mL) 
experiencing unfavorable outcomes at 90 days and those with 
smaller bleeding volume (median 9 mL, 20.56±29.34 mL) 
developing favorable prognosis. Among 203 patients, 67 

patients (33%) had midline shift >3 mm at initial NCCT 
imaging, of which 53 patients (79.1%) developed poor 
prognosis and 14 patients (20.9%) showed favorable 
prognosis and this association was shown to be statistically 
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significant (P<0.001). When evaluating the amount of 
midline shift in mm, we found that higher midline shift 
values (4.4±5.62 mm) were inversely associated with 
prognosis at 3 months (P<0.001). Among CT imaging signs 
evaluated in this study, SS was the most frequently observed 
sign among patients (85, 41.9%), followed by the blend sign 
(66, 32.5%), and BHS (46, 22.7%). The presence of any of 
these imaging signs on initial NCCT was associated with 
worse outcome (all had P<0.05). Baseline imaging features 
of patients are demonstrated in Table 1.

Predictive accuracy of CT imaging features using logistic 
regression

The results of the logistic regression analysis (Table 2) for 
imaging characteristics shown to be statistically significant 
in prognosis determination, showed that higher volume 
of bleeding increases the risk for developing poor 90-day 
outcome (OR =0.981, 95% CI: 0.972–0.991, P<0.001). In 
addition, patients with midline shift greater than 3 mm 
were approximately 4 times more likely to experience 
unfavorable prognosis compared to patients without 
midline shift (OR =4.015, 95% CI: 2.038–7.911, P<0.001). 
Moreover, the presence of BHS was associated with a 5.3-
fold increased risk of worse prognosis in primary ICH 
patients (OR =5.362, 95% CI: 2.262–12.714, P<0.001). SS 

and blend sign also correlated with up to 2-fold increased 
risk of unfavorable prognosis (OR =2.629, 95% CI: 1.451–
4.764, P<0.001 and OR =2.016, 95% CI: 1.081–3.760, 
P=0.026; respectively). The final fitted logistic regression 
model containing the aforementioned resulted 75% correct 
classification rate. 

For determining the importance rate of each imaging 
sign in differentiating patients based on their 90-day mRS 
score, we used the SVM machine learning algorithm. 
Among the statistically significant imaging markers, 
hemorrhage volume was shown to have the highest 
importance rate in determining prognosis (importance 
rate: 100%). Other imaging signs in decreasing order 
of importance included, BHS (importance rate: 63.1%), 
midline shift greater than 3 mm (importance rate: 54%), SS 
(importance rate: 20.4%), and blend sign (importance rate: 
15.6%) (Table 2).

We also utilized the SVM method using the above 
imaging features to establish the 90-day prediction model 
with the best performance. In the training set, the sensitivity 
and specificity were 47.3% and 76.2%, respectively, with 
the diagnostic accuracy rate of 64.7%. In the validation 
set, the sensitivity and specificity were 75% and 68.6%, 
respectively, and the diagnostic accuracy rate was 71.4%. 
The AUC of our model was calculated to be 0.737 (P<0.001) 
(Figure 3). All these results indicate relatively high correct 

Table 2 Association of NCCT imaging markers with 90-day prognosis using logistic regression analysis and machine learning SVM algorithm

Imaging marker Odds ratio (95% CI) P value Importance rate with machine learning

Volume 0.981 (0.972–0.991) <0.001 100%

Midline shift >3 mm

Yes 4.015 (2.038–7.911) <0.001 54%

No 1 (reference)

Black hole sign

Yes 5.362 (2.262–12.714) <0.001 63.1%

No 1 (reference)

Satellite sign

Yes 2.629 (1.451–4.764) <0.001 20.4%

No 1 (reference)

Blend sign

Yes 2.016 (1.081–3.760) 0.026 15.6%

No 1 (reference)

CI, confidence interval; NCCT, non-contrast computed tomography; SVM, support vector machine.
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predictive ability of the fitted model.

Discussion

In this prospective study, we established a prognostication 
model for predicting the functional outcome of patients 
with primary ICH. The proposed model consisting of 
certain radiological features obtained from initial NCCT 
(hemorrhage volume, presence of midline shift, and the 
presence of markers of hematoma expansion such as 
blend sign, the BHS, and the SS) displayed considerable 
discriminative accuracy between unfavorable and favorable 
functional outcome of primary ICH based on mRS at  
3 months. Machine learning-based analysis using the SVM 
algorithm also demonstrated classification performance and 
stability of these imaging parameters across all nested cross-
validation runs, indicating sufficient generalizability of our 
results. The presence of certain clinical conditions was also 
associated with unfavorable prognosis, including higher 
diastolic blood pressure at presentation, advanced age, and 
lower GCS score at admission. Several predictive models 
encompassing radiological and clinical characteristics 
were proposed to determine the outcome of primary ICH 
patients at admission. There is growing interest in the 
early application of CT scan-based prognostication scoring 

systems for evaluation of patients suspected of having ICH 
and it has shown acceptable discriminative ability equal to 
computed tomography angiography (CTA) for predicting 
neurological outcomes (16,26).

It is a well-established paradigm that hemorrhage volume 
profoundly impacts functional clinical outcome for ICH  
patients (7). Several studies have proposed different cut-off values 
for hematoma volume for prognostication, with the majority 
reporting baseline volumes of 20–30 mL or greater suggestive 
of hematoma expansion and neurological deterioration, 
whereas basel ine volumes of  10 mL or less  were 
associated with more favorable clinical outcome and lower 
probability of hematoma expansion (11,27-29). In line with  
these findings, we found that patients with poor prognosis had 
a mean baseline ICH volume of 45.54±50.15 mL. Machine 
learning-based assessment of predictive performance also 
showed the greatest predictive power for ICH volume, 
with OR =0.981, 95% CI: 0.972–0.991, P<0.001 and the 
importance rate of 100%; further indicating hemorrhage 
volume as the strongest indicator of 90-day outcome for 
primary ICH. When the bleeding sites were compared 
between patients with unfavorable and favorable prognosis 
within 3 months of the index ICH, we found no statistically 
significant association between hemorrhage location and 
functional outcome; discouraging the results of previous 
studies (29-33). The INTERACT2 study showed that 
hemorrhages originating from the thalamus, posterior limb 
of the internal capsule, and cerebellum were associated 
with poor functional outcome, specifically thalamic and 
internal capsule bleeding had the greatest association with 
major disability or death (31). In another study of Park 
et al. (29), bleeding within the posterior limb of internal 
capsule and thalamus were independent predictors of poor 
outcome in primary ICH. The proposed mechanisms for 
poor outcome associated with deep hemorrhages include 
functional coagulation differences, different anatomical 
structure injury, and higher hematoma expansion in deep 
bleeding (30,32). Contrary to this, results of The FAST trial 
showed that lobar ICH was associated with larger baseline 
hemorrhage volume, greater expansion of hemorrhage, and 
worse 90-day functional outcome in unadjusted analysis; 
however when adjusting for factors influencing outcome, 
patients with deep ICH paradoxically had worse outcome 
in 3 months (33). Despite the reported discrepancy and 
complex relationship between location of bleeding and  
90-day functional outcome in the literature, our study 
showed no significant relationship between bleeding 
location and prognosis; although patients with hemorrhage 
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Figure 3 The ROC curve for NCCT imaging markers correlated 
with prognosis using machine learning algorithm (AUC =0.737, 
P<0.001). AUC, area under the ROC curve; NCCT, non-contrast 
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in the basal ganglia had worse outcome compared to other 
locations, this association was not statistically significant. 
The discrepancy observed in our study might be due to 
shorter follow-up period compared to previous studies.

Our study also demonstrated that the presence of midline 
shift correlated with poor outcome (OR =4.015, 95% CI: 
2.038–7.911, P<0.001, and importance rate 54%), with the 
mean value of 4.4±5.62 mm observed among patients with 
poor prognosis. Previous studies evaluating the association 
between midline shift value and clinical outcome in primary 
ICH patients reported different cut-off values ranging 
from 3.7 to 6 mm, to be a clinically significant threshold 
for worse outcome (34-36). In accordance with previous 
studies, our study found a low threshold for poor prognosis 
in terms of midline shift (34,35). In this study, NCCT-
based markers of hematoma expansion; the blend sign, 
the BHS, and the SS were all significantly associated with 
poor outcome in primary ICH (P<0.05), with the BHS 
being the most important predictor on machine learning 
analysis (importance rate: 63.1%) followed by the SS 
(importance rate: 20.4%) and the blend sign (importance 
rate: 15.6%). This finding is in correlation with previous 
studies indicating that the BHS on initial NCCT is 
independently associated with poor outcome at 90 days 
with high specificity (37-39). The appearance of BHS on 
NCCT indicates that the presence of bleeding spots of 
varying age within the heterogeneous hematoma and risk 
for future hematoma growth. Additionally, Li et al. (40) 
found that blend sign may be identified on initial NCCT 
with high specificity (95.5%) for predicting hematoma 
expansion and poor outcome. The development of blend 
sign indicates an area of mixed hemorrhage with different 
bleeding times with possible re-bleeding and hematoma  
expansion (16). In another study in patients with primary 
ICH, the BHS and the blend sign were independent 
predictors  of  poor outcome, with the blend s ign 
demonstrating higher accuracy (AUC for blend sign: 
0.660 vs. BHS: 0.620) (39). Furthermore, the SS was 
an independent predictor of hematoma expansion and 
poor outcome in previous studies (41,42). Collectively, 
there is a wide heterogeneity in the reported predictive 
p e r f o r m a n c e  m e t r i c s  o f  t h e s e  N C C T  i m a g i n g  
markers (17). It is important to consider that all these 
imaging markers represent different points of a continuum 
sharing a similar pathophysiological change and that these 
imaging-based markers should be used in combination 
with other important prognosis indicators, such as clinical 
variables to improve their predictive accuracy.

In this study, we also evaluated the influence of 
several clinical indicators in the prognosis of primary 
ICH patients. In line with previous studies (15,43), 
advanced age at presentation correlated with poor 90-day 
functional outcome, with the cut-off value of 68 years for 
differentiating between favorable and unfavorable prognosis. 
Gender was not a predictor of prognosis between the  
2 groups in our study. Several studies have found that 
females was associated with higher ICH scores and worse 
prognosis, due to the more intense inflammatory responses 
generally present in females and various socioeconomic 
factors that may limit females` access to adequate medical 
care (44,45). This observed discrepancy might be 
attributable to variations in female study population, as the 
majority of female patients have equal access to healthcare 
services in our hometown. Additionally, in line with the 
results of our study, Amer et al. (15) conducted a study on 
70 patients with primary ICH and evaluated the clinical 
and radiological parameters in determining prognosis. 
They found that gender was not a determining predictive 
indicator of worse functional outcome. 

The association between hypertension and development 
of ICH was extensively investigated in the literature; and 
elevated systolic blood pressure at admission correlated with 
poor prognosis (46,47). Our study showed that patients 
with elevated diastolic blood pressure at presentation 
(97.37±24.67 mmHg) had unfavorable 90-day outcome 
and high systolic blood pressure values and hypertension 
per se were not statistically different among the 2 groups. 
This may imply that the nominal value of blood pressure at 
admission is not the only indicator of outcome in affected 
patients, rather the dynamic changes in blood pressure 
during follow-up and hospitalization period may profoundly 
impact final prognosis (48). Additionally, the intensive 
blood pressure lowering during hospitalization might have 
lowered the risk of hematoma expansion and poor outcome 
among our study participants.

While there may be a modest association between 
diabetes mellitus and the development of ICH and its 
prognosis (49), no correlation with the final outcome was 
reported in other studies (15,50). Our study also showed 
that diabetes mellitus was not correlated with unfavorable 
outcome. It is imperative to note that uncontrolled diabetes 
mellitus might profoundly facilitate atherosclerosis and 
cause worse prognosis in patients with primary ICH. 
However, patients in our study, had adequately controlled 
blood glucose levels at hospitalization and their prognosis 
was not inversely affected.
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Despite the underlying detrimental alterations of the 
cerebrovascular system of patients with ICH, a history of 
cerebrovascular diseases was not correlated with prognosis 
in our study. In a study of Wong et al. (51), it was shown 
that stroke recurrence rate was high in patients with primary 
ICH (7.01%) during the 5-year follow-up period. Other 
studies have also found a hemorrhagic stroke recurrence 
rate between 7% and 12% (52,53). We assume that short 
follow-up period of our study participants hampered the 
detection of poor outcome in this patient population 
compared to previous studies. In our study, a significant 
inverse association was found between GCS score at 
admission and outcome, which is in line with previous 
studies showing that low GCS at admission was found to be 
independently associated with a worse short-term and long-
term prognosis (54,55).

Contrary to previous studies, we found no correlation 
between underlying cardiovascular and renal diseases 
and 90-day funct ional  outcome of  pr imary  ICH 
patients. Ghoshal et al. (56) found that chronic kidney 
disease increases the risk of ICH. Amer  et al. also 
found that baseline elevated blood urea nitrogen levels 
inversely correlated with outcome (15). The existing 
discrepancy in our study could be explained in part by 
the medical condition of patients with underlying renal 
and cardiovascular diseases at admission. Patients with 
underlying kidney and cardiovascular diseases had well-
controlled disease at hospitalization and their comorbidity 
was adequately controlled by medical therapy. As a 
result, this patient population did not experience worse 
outcome compared to other individuals without renal and 
cardiovascular disorders.

The impact of smoking on the functional outcome of 
primary ICH remains controversial. While some studies 
found a worse prognosis in tobacco users who develop ICH 
(57,58), other studies found no difference in functional 
outcome (59,60). Our study also showed no difference in 
the 90-day functional outcome of patients based on their 
smoking status.

We developed a predictive model for the first time for 
differentiating ICH patients with poor and good prognosis 
by using the SVM method. SVM is a model-free method 
and an efficient approach in classification problems 
without any assumption regarding the distribution and 
interdependency of the predictors. Due to its flexibility, 
it performs better than traditional statistical methods 
such as logistic regression, particularly in situations that 

include multiple risk factors with interrelationships or 
multicollinearity, low sample size, and a limited knowledge 
of underlying biological relationships among risk factors. 
Despite remarkable aforementioned advantages and 
generalization capacity of the SVM, it has some weaknesses, 
such as feature selection challenges, algorithmic complexity 
that affects the training time of the classifier particularly 
in large data sets, development of optimal classifiers 
for categorical dependent variables with more than two 
categories and its unreliable performance in unbalanced 
data sets (61). In other words, high dimensional input 
vectors often reduce the computational efficiency and 
significantly slow down the classification process. Our study 
data set more benefits from the advantages of SVM instead 
of its weakness, however, if we used a larger sample size, 
we could develop a predictive model with more stable and 
reliable results, because we could able to train and test our 
model in subsets with larger sample size. 

The major limitations of our current study were a 
short follow-up period of 3 months, functional outcome 
assessment being limited to the mRS, and a lack of 
laboratory markers assessment to establish a more 
comprehensive predictive model. We also did not evaluate 
other radiological markers of prognostication in ICH 
patients. Future studies are required to evaluate the 
predictive performance of all the relevant radiological and 
laboratory indicators in predicting prognosis of primary 
ICH in our patients particularly using machine learning-
based image segmentation.

Conclusions

In summary, we evaluated the predictive performance of 
several NCCT imaging markers and clinical conditions 
in determining the 90-day prognosis of patients with 
primary ICH. This predictive model could be utilized by 
clinicians in the emergency department for prognostication 
purposes. Hemorrhage volume was associated with the 
most prognostication capability, followed by the BHS, 
midline shift, SS, and blend sign. Among clinical indicators, 
advanced age, elevated diastolic blood pressure, and 
low GCS score correlated with poor prognosis. On the 
other hand, hemorrhage location, females, history of 
diabetes mellitus, cardiovascular diseases, renal disease, 
and cerebrovascular accidents did not correlate with 
worse prognosis in our patients. Further study is required 
to evaluate the impact of other laboratory and imaging 
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indicators on prognosis of patients with primary ICH. 
Furthermore, future studies with larger sample size are 
suggested to evaluate the predictive performance of all the 
potentially relevant radiological and laboratory indicators 
in predicting prognosis of primary ICH particularly using 
machine learning-based image segmentation approaches.
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