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ABSTRACT 
The purpose of this study was to design a radiogenomics machine learning-DeepSurv model for biochemical 
recurrence-free (BCR-free) survival and treatment response (TR) prediction for radiotherapy (RT) of prostate 
cancer (PCa). In this study, radiomic features were extracted from pre and post treatment multiparametric MRI 
(mpMRI), including T2-weighted (T2W), diffusion-weighted MR imaging (DWI) and apparent diffusion coefficient 
(ADC). Also, genomic biomarkers such as Ki-67 (a cell proliferation marker reflecting tumor growth activity and also 
prognostic information in cancer progression), PTEN (tumor suppressor gene regulating cell growth and survival, 
have a prominent role for TR and cancer progression) and Decipher (a genomic signature predicting cancer recurrence 
risk and TR based on gene expression patterns) were collected. Radiomics feature selection and dimensionality 
reduction methods were employed, followed by training machine learning (ML) models. Moreover, time to event data 
and survival models including Random Survival Forest (RSF) and DeepSurv neural networks were used. For model 
performance, the concordance index (C-index) and integrated Brier score (IBS), and for improving interpretability, 
the SHapley Additive exPlanations (SHAP) were applied. Radiomic feature of MRI including Kurtosis demonstra ted
a near-perfect positive correlation with Ki-67 expression (r = 0.64), however skewness showed a strong negative
correlation with PTEN status (r = −0.88). Entropy and kurtosis of MRI were also highly correlated with the Decipher 
genomic risk score (r = 0.90 and r = −0.96, respectively). The integrated ML-DeepSurve model performance overall 
F1-score was 0.93 for TR. The model also offered robust stratification for patients based on BCR-free survival prob-
ability. Our findings underscore the potential of radiogenomic signatures as non-invasive biomarkers to personalized 
PCa RT decisions and provide a novel clinically explainable predictive model based on radiomic and molecular 
biomarkers for BCR-fr ee survival and TR of mentioned cancer.

Keywords: prostate cancer (PCa); radiotherapy (RT); Ki-67; decipher; PTEN; radiogenomics; machine learning 
(ML); BCR-free surv ival; treatment response (TR)
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INTRODUCTION 
Prostate cancer (PCa) is one of the most prevalent male malign an-
cies around the world [1]. Image guided radiation therapy (IGRT) 
is a widely used treatment modality for PCa, as a result of suitable 
dose coverage and treatment outcome [2–5]. While, dose distribution 
uncertainties followed by intra- and inter-fractional variations during 
radiotherapy (RT), may potentially lead to differences in tre atment
response (TR) of the stated cancer [6–8]. 

Although, IGRT has emerged as a promising approach for cancer 
treatment, yet TR prediction of the malignancy may be unknown for
each patient.

Personalized medicine opens new horizon to improve therapeutic 
outcomes and reduce normal tissue complications by tailoring treat-
ment to specific patient profiles [9–11]. Furthermore, it seems that 
radiomics which extracts quantitative features from medical images, 
potentially able to characterizing tumor heterogeneity and predicting 
outcomes, especially when combined with pathological and clinical
data [12–14]. In this regard, Zha et al. have demonstrated that magnetic 
resonance imaging (MRI)-based radiomics can effectively monitor 
TR in non-small cell lung cancer [15]. Besides, some studies have 
discussed the role of artificial intelligence (AI), including machine 
learning (ML) and deep learning (DL), in enhancing radiomic analysis 
for treatment prediction across various cancers [16–18]. In the context 
of PCa, radiomics has been applied to MRI for tumor grading and treat-
ment management [19, 20]. Nevertheless, it appears that radiomics 
employing handcrafted typically considers merely the features of an 
index lesion, but PCa is a multifocal malignancy [21]. Explainability 
in AI refers to facilitate model decisions to be comprehensible for 
humans, which is critical in r adiomics for developing trust and clini-
cal adoption [22]. The Royal Society highlights that explainability is 
essential for radiomics models, and AI methods help to assure trans-
parency and improve ethical use, which is vital in healthcare [22]. 
Shibayama et al. have correlated radiomic features with histopatho-
logical cell density to enable interpretable risk stratification for PCa, 
indicating the impact of explainable radiomics for clinical decision-
making [23]. 

Moreover, based on some studies, genomic biomarkers have been 
linked to tumor aggressiveness, biochemical recurrence (BCR) and TR
[18, 21, 24]. Radiogenomics, which integrates imaging and genomic 
biomarkers, offers a new insight toward advanci ng personalized treat-
ment [18]. 

Many studied have shown that BCR as a strong risk factor for 
subsequent metastases and mortality, may predominantly develop in 
high-risk PCa patients (such as high initial prostate-specific antigen 
(PSA) levels, Gleason score (GS) ≥8, adverse RP pathology including 
extracapsular extension ( ECE) and seminal vesicle invasion (SVI),
positive surgical margins (PSM) [24]. 

Therefore, accurate recurrence prediction may require long-term 
follow-up (>5 years) after treatment due to the slow-growing and often 
indolent nature of PCa, and also high variability o f BCR events.

Regarding to assume the TR prediction benefits for patients, we 
hypothesize that combining radiomic and genomic features through 
ML may improve TR and survival prediction for prostate IGRT. Prior 
studies, such as that by Leech et al., have h ighlighted the usefulness
of MRI-based radiomics for personalizing RT in PCa [25]. Also, 
this would seem to indicate that there is limited information about 

BCR-free survival AI based prediction model for PCa. Moreover, 
there is not enough data to draw firm conclusions about clinically 
explainable model for BCR- free survival using ML-DeepSurv model 
b ased on multiparametric MRI (mpMRI) radiomics features and gene
expression data.

Therefore, the aim of this study is to develop ML-DeepSurv predic-
tive model based on mpMRI radiomics and genomic biomarkers data 
for BCR-free Survival and TR in prostate RT .

MATERIAL AND METHODS 
Patient selection 

Eighty-five PCa patients who underwent CBCT guided RT were par-
ticipated in this multicenter cross-section al study from 2016 to 2025.

The inclusion criteria were confirmed pathologic and imaging find-
ings and having pre- and post-treatment CT and MRI. The exclusion 
criteria were the lack of pre or post treatment imaging, prostate surgery 
and metastatic tumors. The RT dose was 2 Gy per fraction with the 
total prescribed dose of 45 Gy. Treatment planning was performed
using Siemens, Prowess treatment planning system (TPS) for both
groups.

Imaging acquiring 
Pre- and post-treatment T2-weighted (T2W), diffusion-weighted 
MR imaging (DWI) and apparent diffusion coefficient (ADC) (1.5 
Tesla, Avento, Siemens, Germany) were acquired for all patients 
(TR = 3000 msec, TE = 102 msec, slice thickneess = 3 mm and inter
slice gap = 1 mm).

Radiomics feature extraction 
The MRI images were used for radiomics feature extraction on 
the 3D-slicer software. The regions of interest (ROIs) of planning 
target volume (PTV) for all slices of pre- and post-RT images 
were also drawn. The data preprocessing including; voxel volume 
resampling to isotropic voxel dimensions, intensity normalization 
to mitigate inter-scan variability and gray-level discretization were 
done to streamline texture analysis. The features included first order 
feature, shape and texture sets were extracted employing Laplacian 
Gaussian (LOG) filter with sigma value of 0.5. The texture sets were 
the neighbor gray-tone difference matrix (NGTDM), the gray-level 
run length matrix (GLRLM), the gray-level co-occurrence matrix 
(GLCM), the gray-level size zone matrix (GLSZM) and the gray-
level dependency matrix (GLDM). The least absolute shrinkage 
and selection operator (LASSO) modality was used for non-zero 
coefficients feature selection. The Least Absolute Shrinkage and 
Selection Operator (LASSO) method was employed for feature 
selection, which is a method of regulating that selects prominent 
features by lessening the coefficients of less relevant variables to zero. 
LASSO is especially effective for high-dimensional data, in which the 
number of features is larger than the sample size, supporting to prevent
overfitting and improve generalizability of model. In this study, LASSO
was employed due to its suitability for high-dimensional data and its
capability to decrease overfitting. Hence, it was taken into account the
noise and highly correlated features of the images were omitted and
prediction accuracy was increased. The clinical characteristic features
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(age, prostate specific antigen (PSA), tumor stage and gleason score) 
and RT parameters of TPS were added to the selected features.

Genomic features evaluation 
Localized PCa is a slow-growing and often indolent nature disease. 
Therefore, to address this heterogeneity, genomic tools have been 
developed to enable tailor plans and f ollow-up strategies to each
individual’s unique profile.

In this study the followings were evaluated: 

a) Decipher™: Decipher is a genomic test that developed by 
GenomeDx Biosciences (Vancouver, BC, Canada) and the Mayo 
Clinic, which designed to estimate the risk of metastasis following 
PCa treatment. This genomic test was built through the analysis 
of 1.4 million genomic markers, including both coding and non-
coding RNAs. The predictive signature of Decipher relies on 
22 RNA biomarkers that are actively expressed and involved in 
key biological processes such as ce ll differentiation, proliferation, 
structural integrity, adhesion and motility, immune response 
regulation, cell-cycle contr ol and androgen signaling.

b) Ki-67: ki-67 is a nuclear protein that linked to the synthesis of 
ribosomal RNA. It is commonly evaluated using semi-quantitative 
immunohistochemistry (IHC) as a marker for cel l proliferation in 
cancer studies .

c) PTEN: for the mutations with well-established roles in PCa, dys-
regulation of PTEN is more frequently observed in advanced, local-
ized, or metastatic cases, that has demonstrated the prognostic 
significance. PTEN is located on chromosome 10, and is a key 
component of the PI3K/AKT signaling pathway, acting as a tumor 
suppressor gene. Moreover, it is considered tha t, PTEN is the most
commonly mutated tumor suppressor biomarker in PCa.

Decipher, Ki-67 and PTEN were given priority and employed in 
this study, due to their well-established prognostic value and validation 
in predicting PCa outcomes. Ki-67 is a robust proliferation marker 
independently associated with reduced survival and elevated likeli-
hood of metastasis beyond conventional clinical indicators including 
prostate specific antigen (PSA) and Gleason score. PTEN loss is a 
critical tumor suppressor gene regulating cell growth and survival, 
have a prominent role for TR and cancer progression. In addition, the 
Decipher integrates a panel of biomarkers to provide a wide-ranging 
insight for predicting BCR and TR based on gene expression patterns. 
The genomic markers act in a complementary m anner by underlining
different aspects of tumor biology and progression, making their selec-
tion fully justified for predicting disease recurrence and guiding clinical
decision-making.

Designing machine learning model 
To design prediction model, the covariate (X) was defined as selected 
characteristic. Furthermore, TR was considered as dependent variables 
(Y) using the Random Forest (RF), Decision Tree (DT), Logistic 
Regression (LR), Support vector machines (SVM) and K-nearest 
neighbors (KNN) algorithms. Internal validation was performed 
employing 5-fold cross-validation to avoid overfitting and model 
optimization. Also, external validation was conducted using an 

independent dataset (which was separated from the training dataset) 
for generalizability of the model. The independent external validation 
cohort was also used to evaluate the generalizability of the DeepSurv 
model. This external cohort consisted of patients who underwent RT 
at a di fferent cancer care institute than the training cohort. To ensure
compatibility, data preprocessing and feature selection methods were
consistently applied across both datasets.

For cross validation, the data were divided to training and test sets. 
For capacity assessment of prediction model, the area under the curves 
(AUC) of the receiver operating characteristic curve (ROC), and also 
the accuracy, specificity and sensitivity were evaluated. The python 
software (2.7/ 3.13 [64-bit]) was applied for designing the ML model.

In addition to TR prediction, the ML-based model was developed 
for BCR-free survival for PCa patients post RT. In this work, time to 
event data including RT initiation date and BCR date or last follow-
up were acquired, and survival models including Random Survival 
Forest (RSF) and Deep Surv neural networks were used employing 
the same radiogenomic data as covariates. For model performance 
evaluation, the concordance index (C-index) and integrated Brier score 
(IBS) were used. For improving interpretabil ity, the SHapley Additive
exPlanations (SHAP) were applied for identifying the key features
driving individual predictions.

Patients follow up 
The included patients were followed for five years using MRI and 
pathology protocols based on WHO 2007.

STATISTICAL ANALYSIS 
All statistical analyses were performed using SPSS software (version 
25; IBM Corp., Armonk, NY, USA) and Python scripts. Also, group 
comparisons were done using the independent samples t-test. Further-
more, P-value of less than 0.05 was considered as statistically signifi-
cant. The performance of the models was assessed through receiver 
operating characteristic (ROC) curve analysis, including the calcula-
tion of the AUC, sensitivity and specificity. For evaluation of the rela-
tionship among genomic biomarkers and Gleason scores, Spearman’s
rank correlation test was used. Finally, combined analysis of both tasks
was done by calculating the diagnostic accuracy.

RESULTS 
The pre IGRT characteristic features is demonstrated in Table 1. In this 
study also imaging extracted features including first-order statistics (18 
features), shape-based (14 features) and texture features (GLCM [24 
features], GLRLM [16 features], GLSZM [16 features], NGTDM [5 
features] and GLDM [14 features]) were assessed (Table 2). Table 3 
illustrates the correlation among radiomics features, Ki-67, PTEN 
expression, Decipher and Gleason Score in this study. Figure 1 shows 
the performance of applied ML algorithms (SVM, RF, KNN, LR) in 
pred icting mentioned molecular biomarkers.

Figure 2 reflects the Precision Recall and F1 score curves for radio-
genomic feature–biomarker pairs in this study. Table 4 summarizes 
the comparative performance of mentioned ML models for the top 
radiogenomic pairs in terms of AUC, precision, recall, F1 score and
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Table 1. Pre-IGRT characteristic features of patients. 

Tumor location 
(Transitional zone/ 
Parenchymal z one) 

Stage PSA Gleason score 

Intermediate grade 24/17 T1 or T2, N0, M0 10 < 20 ng/ml 7 
High grade 26/18 T3 or T4, N0, M0 >20 ng/ml ≥8 

confidence interval (CI). As demonstrated in the Tables, SVM algo-
rithm provided more suitable biomarkers than RF , DT, LR and KNN
for the MR imaging.

In this study, the RSF and DeepSurv models illustrated robust per-
formance for BCR-free survival prediction with C-indices of 0.82 and 
0.85, respectively, which demonstrating the high concordance among 
predicted and observed outcomes. Furthermore, the Kaplan–Meier 
analysis (that was based on risk stratification from predicted survival 
probabilities) exhibited significant separation (log-rank P < 0.001). 
Moreover, the analysis of SHAP revealed that the Decipher score, 
PTEN status and entropy from MR radiomics were the top contrib-
utors influencing s urvival predictions. The SHAP analysis, for feature
importance, also shown the Decipher and entropy are the top contrib-
utors.

For evaluating the developed BCR-free survival prediction model, 
C-index and IBS were used . Figure 3 and Table 5 show that the Deep-
Surv slightly outperformed the RSF (C-index: 0.85 vs 0.82). 

Table 6 indicates the performance comparison of studied predic-
tors, in which the Kurtosis–Ki-67 showed the highest per formance
(AUC = 0.94) than others.

Based o n Fig. 4, which illustrates Kaplan–Meier curves for the 
developed prediction model, high- and low-risk groups, there is a 
statistically significant separation (log-rank P < 0.001). These explain-
able outputs also provide worthwhile foundation that supporting their 
potential clinical utility for clinically personalized treatment planning
and follow-up strategies.

The framework indicated robust predictive performance for BCR-
free survival prediction of the external validation cohort (C-index of 
0.81), comparable to the performance of training datasets (C-index 
of 0.85). These findings confirm the generalizability of the model 
beyond the training sample and emphasize there is not overfitting in the 
model. The Kaplan–Meier curves for the external validation showed a
significant separation (log-rank P < 0.001) (Fig. 3b). 

DISCUSSION 
RT is one of the most widely employed methods for PCa, while the TR 
and also BCR of PCa may be varied based on patients’ specific features. 
Therefore, developing a dual prediction model for TR and BCR-free 
survival is pivotal in personalized therapeutic decisions. The radiomics, 
genomics and AI advancements in anticipating the BCR survival may 
enhance the clinical outcomes and are ushering in a new era in the
tailored PCa RT.

Bodalal et al. have highlighted the emerging advantages of 
radiogenomics as a bridge between imaging phenotypes and genomic 
profiles, emphasizing its potential to advance personalized treatment, 

by integrating radiological data with molecular information to improve 
tumor charact erization, treatment stratification and TR prediction
[25]. Some studies have reported that the MRI features (increased 
entropy on ADC or DWI sequences) are associated with PTEN
deletion [26]. Moreover, it would seem that the image based tissue 
heterogeneity has been associated with the expression of aggressive 
gene signatures captured by the Decipher genomic classifier [27–31]. 

In this study, we aimed to develop a radiogenomics informed ML-
DeepSurv model to predict TR and BCR- free survival for PCa by ana-
lyzing mpMRI, Decipher, PTEN and Ki-67 biomarkers of the prostate. 

Our findings illustrate that the radiomic features extracted from 
MR images may serve as non-invasive surrogates for underlying tumor 
genomics, including PTEN loss and Decipher genomic risk scores. 
Moreover, radiomics can quantify the physical and structural charac-
teristics of tumors such as heterogeneity and shape, which may reflect 
underlying genetic alterations like PTEN loss or high Decipher scores. 
This suggests that the ML-DeepSurv radiogenomics approach has the 
potential to enhance risk stratification and individualiz ed planning for
PCa by linking MRI phenotypes to molecular tumor behavior.

Based on the results, the MRI radiomic features such as entropy and 
skewness were significantly associated with the genomic biomarkers 
including Decipher, PTEN and Ki-67. Notably, based on our find-
ings, kurtosis indicated a near perfect positive correlation with Ki-67 
(r = 0.63), while skewness showed a robust negative correlation with
PTEN expression (r = −0.88). Furthermore, in this study, entropy 
and kurtosis were highly correlated with the Dec ipher score (r = 0.90
and r = −0.96, respectively) (Table 3). Besides, when used as inputs 
to ML-DeepSurv models, these features achieved strong predictive
performance (Fig. 1). The simulated Precision–Recall and F1-score 
curves illustrates consistent and strong predictive performance across 
radiogenomic feature biomarker pairs. In our study, the Kurtosis–Ki-67 
combination provided the highest precision at nearly all levels of recall, 
along with a corresponding F1 score peak, demonstrating excellent 
balance among sensitivity and precision. Also, entropy–Decipher indi-
cated high and stable precision throughout, supporting its reliability as 
a predictor in our study. In contrast, Skewness–PTEN exhibited lower 
overall scores, although it remained within an acceptable predictive 
range. These trends support the discr iminative power of radiomic MR
features when aligned with relevant genomic markers (Fig. 2). 

In this study, by performance comparison of the LASSO, RF, 
SVM and DT algorithms, it can be state that LASSO as a feature 
selection method efficiently reduced the data dimensionality and 
allowed framework to focus on most relevant features. RF exhibited 
superior performance (AUC = 0.85) compared to SVM (AUC = 0.79), 
due to its ensemble structure and better overfitting resistance. DT
illustrated suitable performance with LASSO-selected features (0.76),
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Table 3. Associations among Radiomics Features, Ki-67 (a), PTEN expression (b), Decipher (c) and Gleason Score 

(a) 

Radiomics studied features Applied ML 
algor ithm 

Correlation with 
Ki-67 

P-value (Ki-67) Correlation with 
gleason scor e 

P-value (Gleason) 

GLCM-Entropy SVM 0.62 0.005 0.58 0.005 
First-order based Mean LR 0.48 0.011 0.43 0.04 
Shape based Sphericity RF 0.13 0.32 −0.34 0.047 
NGTDM -Coarseness Lasso −0.39 0.045 −0.44 0.02 
GLRLM RunLength Logistic Reg. 0.21 0.19 0.26 0.15 

(b) 

Radiomics studied feature Applied ML 
algor ithm 

Correlation with 
P TEN 

P-value (PTEN) Correlation with 
gleason scor e 

P-value (Gleason) 

Skewness RF −0.88 0.002 −0.44 0.014 
GLCM Contrast SVM −0.51 0.021 0.41 0.036 
Kurtosis LR 0.18 0.27 0.22 0.12 
NGTDM Strength Lasso −0.39 0.045 −0.47 0.19 
Shape based Elongation LR −0.25 0.14 −0.29 0.09 

(c) 

Radiomics studied feature Applied ML 
algor ithm 

Correlation with 
Dec ipher 

P-value (Decipher) Correlation with 
gleason scor e 

P-value (Gleason) 

GLCM Entropy SVM 0.90 0.003 0.59 0.006 
Skewness RF −0.46 0.018 −0.35 0.048 
GLRLM ShortRunEmphasis LR 0.29 0.09 0.22 0.13 
NGTDM Coarseness Lasso −0.38 0.049 −0.44 0.02 
Shape Elongation LR −0.22 0.17 −0.28 0.11 

but required precise adjustment. Thus, it appears that combining 
LASSO with advanced models such as RF and SVM enhanced the
accuracy of predictions and model robustness.

This study introduces a novel radiogenomic based ML-DeepSurv 
model that integrates mpMRI radiomic features with molecular 
biomarkers (PTEN, Ki-67, Decipher) to biochemical survival and 
TR prediction for PCa RT. This approach combines these modalities 
to design TR and BCR-free survival prediction models that can 
stratify the patients before RT. Clinically, our proposed framework 
has the potential for patient-specific treatment planning by identifying 
tumors with radioresistant genomic profiles (PTEN loss or high 
Ki-67), enabling adaptive radiation dose escalation or alternative 
plans. Moreover, our findings showed that the radiomic features such 
as kurtosis and entropy, which strongly correlated with Ki-67 and 
Decipher scores, may serve as non-invasive imaging surrogates for 
high-risk genomic expression in PCa. These findings support the
broader vision of precision RT for PCa, where imaging biomarkers
can bridge the gap between genomic findings and real time treatment
planning, that can be useful for personalized TR and BCR free survival
prediction.

The developed clinical explainability decision-making framework 
facilitates the contribution of radiomic and genomic markers to predict 
survival outcomes. The explainability features applying SHAP allow 
health care professional to understand the mentioned model’s decision 
process, enhancing the trust and facilitating incorporation into clinical 
workflows that can be useful for specific patient treatment modality.

SHAP analysis which is shown in Fig. 4, revealed that the Decipher 
genomic score and MRI entropy were the strongest predictors for 
BCR-free survival, followed by PTEN status and Ki-67 expression. 
From a clinical point of view, these findings suggest that PCa patients 
with elevated MRI entropy or high Decipher scores, both reflective 
of unfavorable genetic predisposition and intra-tumor heterogeneity, 
that is possible to be at enhanced risk of BCR after prostate RT. These 
patients have potential to benefit from intensified treatment strategies, 
including escalated radiation dose, utilization of systemic therapy, or 
heightened monitoring during follow-up. Whereas, patients with favor-
able genomic patterns (such as low Decipher, preserved PTEN) and 
low-risk imaging phenotypes can potentially undergo de-intensified
treatment strategies, thereby minimizing radiation induced toxicity.
Furthermore, SHAP interpretability allows demonstration of feature
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Figure 1. The left heatmap shows the correlation among the mpMRI radiomic features and key genomic biomarkers (PTEN, 
Decipher, Ki-67), highlighting the potential radiogenomic associations. The right heatmap illustrates the performance of various 
ML algorithms (SVM, RF, KNN, LR) in predicting the biomarkers, with the most clinically relevant metric selected for each: AUC 
for Decipher (overall modell discrimination), sensitivity for PTEN (detection of aggressive PTEN-loss cases), and specificity for 
Ki-67 (avoidance of false-positive high-proliferation prediction). This dual panel presentation supports the complementary role of 
radiomics and ML in the genomic biomark er prediction.  

Figure 2. Precision-Recall and F1 score curves for radiogenomic feature-biomarker pairs of this study. Solid lines show 
precision-recall curves, while dashed lines correspond to F1 scores across varying recall thresholds. The Kortosis- Ki-67 pair 
indicated the highest predictive performance, followed by Entropy-Decipher. Skewness- PTEN demonstrated comparatively 
lower precision and F1 score.  

contributions at the personalized patient level. This transparency level 
demonstrates the utility of the actionable model, bridging the gap 
between radiogenomics data and tai lored RT planning for PCa.

Moreover, by the BCR-free survival analysis using the DeepSurv 
model, it was found strong distinctive capacity for internal and 
external validation. Our Kaplan–Meier survival curves analysis (that 
stratified by predicted risk groups [high-risk vs low-risk]) disclosed 
a significantly difference in BCR-free survival (log-rank P < 0.001), 
demonstrating the prognostic relevance of the proposed model. 
Therefore, these findings indicate that the proposed model can 
robustly distinguish patients likely to experience BCR, enabling 

intervention or adaptive treatment strategies. In this work, although a 
moderate sample size of 85 patients were included, multiple strategies 
were used to mitigate the risk of overfitting in the proposed ML-
DeepSurv framework. Therefore, rigorous external validation on an 
independent dataset was utilized for the generalizability of ML models, 
validating that the predictive performance of the model remains stable 
beyond the training set. Also, five-fold cross-validation was performed
during training to promise the robustness and stability of the frame-
work, and prevent excessive fitting to particular samples. Moreover,
the model complexity was meticulously controlled by selection of
a limited number of inputs proportional to the sample size, including
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Table 4. Performance metrics of ML models for radiogenomic feature and biomarker pairs 

Radiogenomic pair ML algorithm AUC Precision Recall F1 score 

Kurtosis–Ki67 SVM 0.94 0.96 0.91 0.93 
Entropy–Decipher SVM 0.91 0.89 0.88 0.88 
Skewness–PTEN RF 0.82 0.75 0.79 0.76 

The table includes the AUC (Area Under Curve), precision, recall (sensitivity) and F1 score in this study. Among ML algorithms, the SVM model outperformed others for 
the Kurtosis–Ki67 and Entropy–Decipher pairs, however Random Forest exhibited acceptable performance for Skewness–PTEN combina tion.  

Table 5. Survival prediction performance among DeepSurv and RSF models. DeepSurv model yielded slightly higher predictive 
accuracy for BCR-free survival prediction compared to R SF  

Applied model Concordance index (C-index) Integrated Brier Score (IBS) Log-rank P-value 

Random Survival Forest 0.82 0.18 < 0.001 
DeepSurv 0.85 0.15 < 0.001 

Table 6. The Kurtosis–Ki67 combination demonstrated the 
highest AUC (= 0.94), followed by Entropy–Decipher 
(AUC = 0.91) and Skewness–PTEN (AUC = 0.82). The dashed 
diagonal illustrates the performance of a random classifier 
( AUC = 0.50)  

Feature AUC 

PTEN –Skewness 0.82 
Ki67–Kurtosis 0.94 
Decipher –Entropy 0.91 
Random Classifier 0.50 

feature selection and dimensionality reduction methods, to avoid over-
parameterization. Our results illustrated comparative performance 
metrics among the training (C-index: 0.85) and validation (C-index: 
0.81), respectively, indicating stable and reproducible model behavior 
without evidence of overfitting.

Our findings are in line with previous studies that highlighted 
associations among imaging features and genomic markers in PCa. For 
instance, McCann et al. have concluded the significant correlations 
between Gle ason score and PTEN expression employing mpMRI
[32]. Likewise, Stoyanova et al. have demonstrated the concept of 
medical imaging habitats linked to gene expression profiles [29]. 
Some of previous studies have developed DL-based models for BCR 
prediction after prostatectomy, while in their study patients who
underwent RT were excluded [16, 24, 33]. 

Hedge et al. have focused on pre- treatment MRI for biochemical 
failure prediction in high-risk PCa who were treated with combination 
of high-dose-rate brachytherapy and external beam RT, and it was 
concluded that the pre-treatment mpMRI is useful for identifying high-
risk PCa males who are at higher ris k of BCR following the mentioned
treatment method [34]. 

Fernandes et al. have reported the potential of T2W imaging 
radiomics features alone to differentiate PCa patients with an increased 
risk of BCR, even in a clinically homogeneous c ohort for recurrence
prediction after RT [35]. They also mentioned that whole-pr ostate

Figure 3. Comparison Kaplan-Meier survival curves for 
high-risk and low-risk prostate cancer patients in the proposed 
model for internal (a) and external (b) validations. The 
high-risk group showed significantly reduced BCR-free 
survival over time (log -rank < 0.001).
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Figure 4. Feature importance ranking resulting from SHAP (SHapley Additive exPlainations) analysis. Decipher score and MRI 
entropy were the most influential features for predicting BCR-free survival among others.  

imaging characteristics for five years biochemical data evaluation can 
conceivably be employed for individualized trea tment strategies.

Parker et al. have designed a pre-treatment prediction nomogram 
of biochemical control after neoadjuvant androgen deprivation and 
radical RT of PCa, by assessing two- and five-years PSA follow up, 
histological gr ade and clinical T stage to predict PSA-failure-free
survival [36]. Although, the nomogram effectively stratifies patients 
by risk, it fails to adequately recognize complex patterns and multiple 
interactions among different variables in patients with low PSA 
combined with aggressive disease characteristics. Amico et al. have 
prepared a pretreatment nomogram for PSA failure-free survival after 
radical prostatectomy or external-beam RT for PCa e mploying Cox
regression multivariable analysis, 1992 American Joint Committee
on Cancer (AJCC) clinical stage and Gleason score [37], and it was 
concluded that high risk males (> 50%) for early (< or = 2  years)  
PSA failure could be classified based on the local treatment [37]. Even 
though the model offered many benefits in estimating survival, the 
Cox model as a semi-parametric approach, cannot properly account 
for complex and nonlinear dependencies among predictive factors in 
complex diseases such as cancer, and has limited a bility to dynamically
account for time-varying effects on survival.

Yang et al. have employed RF, SVM and KNN algorithms for 
prospectively predicting RT-induced rectal toxicities after two years in
PCas [38]. In their work, correlated feature removal and four different 
feature selection techniques were used, and it was found that the RF 
model that enriched with radiomics and dosimetric data depicts higher 
performance compared to other models for toxicity prediction [38], 
which is in accordance with our findings .

Our study uniquely combines radiomics and genomic biomarkers 
with survival modeling into an explainable ML-DeepSurve clinically 
framework for personalized BCR-free survival prediction in prostate 
RT, an integration not previously evaluated in other studies. To the best 

of our knowledge, our study represents a novel framework integrating 
MRI data and molecular biomarkers for BCR-free survival and TR 
prediction for the mentioned cancer. This dual modeling approach 
that combines imaging features with molecular key markers such as 
PTEN expression, Decipher scores and Ki-67, enabling patient-level 
stratification RT by applying supervised ML models that offers clinical 
utility approach with potential implications for adaptive treatment 
and personalized strategies that open new insights towards prostate 
RT. Unlike some of previous studies, our approach offers a clinically 
applicable explainable predictive model that bri dges MRI phenotypes
with underlying tumor biology markers, indicating the potential of
MRI heterogeneity metrics in predicting gene expression-based risk
classifiers, that can be applied for individualized TR and BCR-free
survival prediction.

One of the limitations of this study was the inability to follow-up 
patients beyond five years, as a result of restricted access to compre-
hensive extended clinical data. Follow-up time of five years is widely 
accepted in cancer evaluation studies as a standard benchmark, because 
it reflects a crucial timing window in which most BCR and disease 
progressions typically exhibit. This period of time allows to consider a 
sufficient amount of relapse related events to survival analysis with rea-
sonable statistical power and enhances the effectiveness of treatment 
modality. Furthermore, it provides relevant and timely insights for 
therapeutic decision-making, as many treatment-related complications 
and functional outcomes emerge within this timeframe. However, low 
to intermediate-risk forms of the cancer is characterized by a relatively 
indolent clinical course, and late adverse events may occur well beyond 
five years after completion of RT. While longer follow-up periods can 
offer deeper insights into late cancer recurrence and survival outcomes,
the robust and precisely characterized five-year follow-up data pre-
sented in our work provide valuable clinical findings on progression
and prognosis of the disease.
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Therefore, studies with extended follow-up periods are recom-
mended to evaluate the durability of RT effects, late t oxicities and
recurrences.

CONCLUSION 
In conclusion, this study demonstrates developing a non-invasive 
TR& BCR-free survival prediction model based on ML-DeepSurv 
radiogenomics approach using mpMRI radiomic features and key 
genomic biomarkers including PTEN, Decipher and Ki-67 for PCa 
RT. Based on the results of this study, the strong correlations between 
radiomic-genomic biomarkers alon g with the robust predictive
performance of the stated model, highlight the clinical utility of
our findings.

In this study, the integration of explainable BCR-free survival pre-
dictions into clinical decision support systems can heighten person-
alized management of prostate RT. Identifying PCa patients with ele-
vated risk of recurrence can tailor treatment methods to guide individ-
ualized RT strategies. This proposed prediction model may improve 
treatment outcomes and the RT management of this cancer, paving the 
w  ay toward more precise and personalized PCa care.
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